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Detailed velocity measurements and numerical predictions are presented for the flow 
through a plane nominally two-dimensional duct with a symmetric sudden expansion 
of area ratio I :2. Both the experiments and the predictions confirm a symmetry- 
breaking bifurcation of the flow leading to one long and one short separation zone for 
channel Reynolds numbers above 125, based on the upstream channel height and the 
maximum flow velocity upstream. With increasing Reynolds numbers above this 
value, the short separated region remains approximately constant in length whereas 
the long region increases in length. 

The experimental data were obtained using a one-component laser-Doppler 
anemometer at many Reynolds number values, with more extensive measurements 
being performed for the three Reynolds numbers 70, 300 and 610. Predictions were 
made using a finite volume method and an explicit quadratic Leith type of temporal 
discretization. In general, good agreement was found between measured and 
predicted velocity profiles for all Reynolds numbers investigated. 

1. Introduction 
It is well known that the flow through a plane symmetric sudden expansion 

becomes asymmetric about the central plane as the Reynolds number is increased. 
This was experimentally documented by Durst, Melling & Whitelaw (1974), 
Chedron, Durst & Whitelaw (1978), Sobey (1985) and more recently by Fearn, Mullin 
6 Cliffe (1990). At low Reynolds numbers the flow remains symmetric with 
separation regions of equal length on either side of the channel, this length increasing 
with increasing Reynolds number. At higher Reynolds numbers, however, one 
recirculation region increases in length at the expense of the other recirculation zone 
and the asymmetry remains in the flow, even up to turbulent flow oonditions 
(Restivo & Whitelaw 1978). This phenomenon is explained by a 'Coanda' effect, see 
Wille & Fernholz (1965) and Shapira, Degani & Weihs (1990). 

The critical Reynolds number Re, at which the asymmetry begins is not well- 
defined experimentally and results from Fearn et al. (1990) and the present study 
suggest that this is not a sudden transition, and possibly due to small imperfections 
present in the experimental apparatus. In  any case, past experimental investigations 
suggest that the Reynolds number at  which asymmetry is observed is also influenced 
by the channel expansion ratio, k,, and aspect ratio ka. Although systematic 
dependencies have not yet been established, the Re, value decreases with increasing 
expansion ratio and decreases with an increase in channel aspect ratio. 

t Present address : Instituto Superior TBcnico, Department of Mechanical Engineering, Av. 
Rovisco Pais, Lisbon, Portugal. 
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The plane sudden expansion was numerically investigated by Acrivos & Schrader 
(1982), in which the dependence of the separation length on the Reynolds number 
and on the ratio of the upstream channel half-width to the step height was 
investigated in the limit of large Reynolds numbers. It was found that the separation 
length was proportional to Reynolds number when the inlet profile was fully 
developed. When a uniform inlet velocity profile was considered, there was a critical 
ratio at which this linear growth disappeared. Other fundamental studies were 
performed by Sobey (1985) and Sobey & Drazin (1986), who investigated the 
instabilities and bifurcations of two-dimensional channel flows. At a relatively low 
critical Reynolds number, a pitchfork bifurcation occurred such that two stable 
asymmetric steady flows were formed. Increasing the Reynolds number allowed 
several steady and unsteady solutions and when the Reynolds number was 
sufficiently large a Hopf bifurcation existed, resulting in solutions periodic in time. 
However, the smooth channel expansion and the periodicity in the longitudinal 
direction prevents these conclusions from being applied to the present flow geometry. 

Recently Shapira et al. (1990) have performed a linear stability analysis of the 
symmetric flow in sudden plane expansions showing that the eigenvalue which 
corresponds to the least stable mode is real, indicating that for Reynolds numbers 
larger than a critical value steady asymmetric solutions exist. They computed a 
critical Reynolds number (Re,) that is in good agreement with the one observed 
experimentally for an expansion ratio of 1 : 3 but they overpredicted Re, for the 
expansion ratio 1 : 2. 

The objective of this work is twofold. First to map in detail using laser-Doppler 
velocimetry (LDV) the flow field in a channel with an expansion ratio 1 :2 at a high 
Reynolds number, in the fully laminar regime (up to Re = 610, based on upstream 
channel height and upstream maximum velocity) and in the absence of strong 
induced flow three-dimensionality or unsteadiness. Second, to obtain numerical 
predictions using third-order temporal and spatial finite difference discretization 
schemes. Special emphasis is given to the calculation of the onset of flow asymmetry 
and to the possibility of transition of the flow to a time-dependent behaviour at  high 
laminar Reynolds numbers via a two-dimensional (Hopf) bifurcation. 

In $2 of the present paper, the experimental set-up and the measuring system 
employed in the present study are described, together with some measurements that 
characterize the overall features of the flow. A t  high Reynolds numbers the flow 
showed a slight three-dimensionality throughout the separation region, which is also 
documented. In 93 details of the computational method are given. The details of the 
temporal and spatial discretization are given in the Appendix. Results of the 
experimental and numerical work are presented and discussed in 94, with particular 
attention being given to the strong asymmetry that characterizes this flow. Direct 
comparisons between measurements and predictions are made in this section, 
showing good overall agreement. 

2. Experimental details 
The experiments were conducted in the facility sketched in figure 1. In  the centre 

of the figure the test section is shown, indicating the plane symmetric two- 
dimensional duct with a sudden change in cross-sectional area yielding an expansion 
ratio of 1 to 2. The aspect ratio of the channel was 16 : 1 and 8 : 1 before and after the 
expansion, respectively. The sidewalls, constructed of glass, allowed optical access 
from both sides of the channel for all values of z upstream and downstream of the 



Plane symmetric sudden-expansion pow 569 

. __---. 

Setting 
chamber 

/ ’ - -____--  I I .Oil drain / 
\ 

I yu 

- -  

I l l  
L U 

x--y traversing table X 

///////////,////////////////// /’/’///// / /// / ’///////////////,////, 
FIQURE 1. Experimental equipment and test section. 

expansion, thus allowing the application of the laser-Doppler measuring technique. 
Spacers of equal height were positioned around the tightening screws and between 
the upper and lower sidewalls to maintain a constant channel height before and after 
the expansion ( &  1 YO). To carry out traverses of the measurement volume, the test 
section was placed on a three-dimensional traversing table fitted with precision dial 
gauges allowing the position of the measuring control volume to be located within 
- + 15 pm in the x- and z-directions and +5 pm in the y-direction. 

To provide a constant air flow, compressed air from the air supply line of the 
laboratory was passed through a first and second stage pressure regulator which 
controlled the outgoing pressure to within f 0.15 %. This provided an air stream of 
sufficiently constant supply pressure to ensure good repeatability of the flow settings. 
It also provided a constant supply to the atomizers which produced seeding droplets. 
A droplet separator was placed after the atomizer to remove the large droplets and 
to yield a particle size distribution suitable for the present measurements. The air 
stream with particles was passed through a second separator and into the settling 
chamber of the test section where it flowed through screens and flow straighteners 
prior to reaching the contraction nozzle of the test section inlet. Owing to  the large 
dimensions of the settling chamber very low streamwise velocities occurred, resulting 
in a residence time sufficiently long to create a particle-free zone in the upper part 
of the test section. To obtain measurements of both the short and the long separation 
regions, the flow was investigated both for situations where the shorter separation 
bubble had settled on the lower wall and where the larger separation bubble settled 
on the lower wall. It was observed during preliminary experiments that either the 
smaller or the larger separation region could settle on either side of the flow, see 
Chedron et al. (1978). Irrespective of which side the attachment occurred, the 
corresponding short and long separation regions always had identical dimensions. 

In order to prevent laboratory air draughts from influencing the flow through the 
channel, the outlet was closed with a wire mesh box. The downstream end of the box 
was connected to a suction pipe that vented the air out of the laboratory. Filter 
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material and flow straighteners were placed in the exhaust pipe to suppress any 
disturbing influences of the exhaust fan. Measurements of the flow velocity at the 
outlet of the channel were recorded as a time series and as frequency spectra for very 
low-velocity channel flows, approximately 1 cm/s, in order to  demonstrate that 
there was no periodic fluctuations of velocity due to the suction fan on the exhaust 
side. 

The laser-Doppler anemometer (LDA) for the velocity measurements consisted of 
a 15 mW helium-neon laser, a self-aligning beam splitter and a double Bragg cell unit 
all mounted on a common base to form a single-channel laser-Doppler optics 
operating in the forward scatter mode. The scattered light was collected through a 
single lens element and focused onto a pinhole in front of the photomultiplier, laid 
out to provide an effective measuring control volume of 150 pm in diameter and 
about 1 mm in length. The signal from the photomultiplier was processed by a BBC- 
Goerz frequency tracker which was operated with a signal rate of approximately 
60 ?4 by appropriately adjusting the particle-seeding bypass system. The analog 
output signal of the tracker was digitized using a 12-bit AID and read into a Hewlett- 
Packard 2100 computer, which allowed mean velocity and fluctuating velocities to 
be computed. 

The data presented in this paper relate to the mean velocity measurements. The 
r.m.s. velocity measurements were low and could all be explained by gradient 
broadening effects due to the finite size of the measuring control volume. Some 
higher-amplitude velocity fluctuations, amounting to 1 % of the mean inlet flow 
velocity, could be detected near the main reattachment points for the Reynolds 
number 610. At Re = 300 these fluctuations did not exceed 0.5% of the inlet mean 
velocity. Therefore, oscillations of the type observed by Sobey (1985) or Sobey and 
Drazin (1986) and Fearn et al. (1990) were not observed in this experiment. The mass 
flow, as computed by integrating the mean velocity profiles taken on the channel 
centreline, lay within f 2 % of the value computed a t  the inlet for all measurement 
planes considered. 

A fully developed laminar flow (parabolic profile) was achieved prior to and far 
downstream of the expansion. The possible three-dimensionality was investigated in 
two ways. Oil film studies were performed to visualize the extent of the corner vortex 
found in the sidewall region of the test section. This vortex extended between 1 and 
1.5 step heights into the flow for Re = 70 and was therefore considered to have only 
a small influence on the centre part of the flow. Further study of the three- 
dimensionality consisted of velocity profiles obtained across the width of the channel 
at  selected downstream positions. Figure 2 illustrates the contours dividing positive 
U-velocities from negative U-velocities in a channel cross-section a t  Re = 610. I n  this 
case the corner vortices, indicated approximately by the hatched regions, have 
increased in size from those measured for lower Reynolds number. 

Detachment and reattachment points of the flow were determined by measuring 
the U = 0 position a t  various distances from the wall and extrapolating this line to 
the wall surface. These positions, denoted by xl, x2.. . , are normalized with the step 
height of the expansion, S. 

3. Numerical method 
The flow through the sudden expansion is assumed to be laminar, two-dimensional, 

steady or time dependent and the fluid to be Newtonian, incompressible and of 
constant viscosity. A finite volume method was used to discretize the Navier-Stokes 
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equations. A temporal flow evolution was originated by impulsively starting the flow 
from rest. Predictions obtained with three different temporal discretization schemes 
were compared to investigate if the temporal accuracy would greatly influence the 
predictions. The schemes used were the first-order implicit backward Euler scheme ; 
the second-order-accurate Crank-Nicolson and the third-order explicit quadratic 
Leith type (QUICKEST) (Leonard 1979). Common to all the numerical algorithms was 
the use of a 13-point quadratic upstream scheme for convection-diffusion 
discretization. The derivation of the QUICKEST scheme was presented by Leonard 
(1979) for one-dimensional problems. I ts  extension to  multidimensional problems is 
not straightforward and very few predictions have been reported using this scheme, 
see Davis & Moore (1982). Details using a new derivation procedure are provided in 
the Appendix where the finite difference counterparts of the Navier-Stokes equations 
in two-dimensional form are presented. Although some differences were found in the 
three numerical solutions, they influence neither the physical analysis of the flow nor 
the comparison with experiments for the steady-state solution. 

The flow was impulsively started from rest with inlet conditions corresponding to 
a fully developed channel flow prescribed at x / H  = -4. At the outlet ( x / H  = 100) a 
monochromatic travelling wave was assumed to describe the open boundary, i s .  

where 4 = U,  V ,  and c denotes the wave celerity taken as the channel bulk velocity. 
If a steady state is reached, this boundary condition reverts to zero velocity gradient. 
No-slip conditions were set at the channel boundaries. As a staggered grid was used, 
the convective and diffusive fluxes across the control volume half-face surrounding 
the sharp edge corners at  the plane expansion were evaluated according to Davis & 
Moore (1982). 

Computations were performed on two grids comprising 56 x 56 and 112 x 112 
control volumes respectively. Solution error estimates were obtained as suggested by 
Obi, Peric & Rcheuerer (1990) yielding a maximum absolute error of 5 %  of the 
1 12 x 112 grid. All subsequent> results presented were obtained using thi8 grid. 

19 2 
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For explicit calculations the maximum Courant number was kept below 0.8 
yielding a time step equal to At = lo-' s for Re = 610, or a non-dimensionalized time 
step (At Umax/H = 9 x lo-,). 

In neither the experiment nor the predictions is the exact origin of the flow 
bifurcation trigger clear. Fearn et al. (1990), for instance, postulated that small 
imperfections which are inevitably present in the experimental apparatus, prohibit 
a symmetric bifurcation velocity diagram. They modelled these imperfections by 
computing a slightly asymmetric expansion (1 %). In the present work a symmetric 
flow configuration was always assumed and a flow bifurcation occurred without any 
geometric inlet perturbation. This is due to truncation errors which prevent, a zero 
transverse velocity at the symmetry plane. Traverse velocity leads to a locally higher 
streamwise velocity and thus a low pressure that maintains the asymmetric flow 
through the cross-channel pressure gradient. 

In the vicinity of the critical Reynolds number the required number of time 
iterations to achieve an asymmetric solution is very high. The explicit discretization 
yielded a much more rapid (in time) occurrence of bifurcation than the implicit ones. 
Many other ways to perturb numerically the flow have been attempted in the past 
but it is not likely that the characteristics of real flow perturbations can be known 
in detail. Regardless of this, different physical perturbations introduced numerically 
should all lead to the same final flow pattern and the one that results in the minimum 
computational time should be chosen, see Braza, Chassaing I% Ha Minh (1986). 
Therefore, to reduce computational time, inlet perturbations were prescribed during 
a short time period and then removed. The numerical perturbations are not a 
sustained source of energy to the flow but rather a trigger mechanism to amplify the 
instability that bifurcates the solution to the Navier-Stokes equations. The method 
used to generate the perturbation was as follows: 

(i) Solving the initial-value problem, the flow is accelerated from rest. The inlet 
conditions are therefore zero velocity and a parabolic profile for the V- and U-velocity 
components respectively : 

(ii) After n time iterations and during m time iterations the inlet velocity profiles 
are changed as a function of time only for the U-velocity component, and as a 
function of time and space for the normal velocity component according to 

w was equal to 1 to 10 Hz and the amplitude was chosen as high as C, = 0.2. The time 
at  iteration m is denoted by t o .  The normal velocity component was prescribed as 

(4) V(y, t )  = C,Um, sin [2xw(t- to)]  sin [x(y-Cc3-yo)/C3], 
where 

yo = C4 sin [2n(t-tO)], C,  = Oj0.05, C, = 0.01, C4 = 0.001. 

The above perturbation scheme was one of many different perturbations attempted. 
The steady-state solution however, was in no way influenced by the perturbation 
function and in this sense the perturbation was truly arbitrary. 

The effect of the perturbations is illustrated in figure 3. In this figure the points of 
detachment or reattachment (xl, xz, . . .) are shown as a function of time. Figure 3 (a )  
is computed for a Reynolds number of 7 0  and illustrates that the flow is stable in its 
symmetry and no bifurcation occurs during or after the period of perturbation. 
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FIGURE 3. Calculated temporal evaluation of detachment and reattachment points: (a) Re = 70 
without perturbation; ( b )  Re = 610 with perturbation; (c) Re = 610 without perturbation. 
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Results for Re = 610 are shown in figure 3 ( b )  and are representative also for those 
computed a t  Re = 300. Here the asymmetry is readily apparent as is the relative fast 
convergence to stationary lengths of the separation zones. This is apparent by 
comparing these results to those in figure 3 ( c ) ,  obtained without any prescribed 
perturbations in the computations. Not only does the asymmetry of the flow arise 
much later but even afterwards; the final lengths of the separation regions are not 
reached for a very long time. In  fact over the time period shown in figure 3 ( c )  the xi 
values are still converging on their final values. 

The large fluctuations of xi values observed during the perturbation period in 
figure 3 correspond to the initial development of the flow field after the impulsive 
start. This is more clearly seen in the time series of streamline patterns shown in figure 
4 for Re = 610. During this period the separation zones vary dramatically in length 
and position before reaching their steady-state condition. 

4. Results and discussion 
The global development of the steady flow obtained with increasing Reynolds 

numbers is summarized in the series of streamline patterns shown in figure 5.  These 
results, obtained with the explicit Leith-type temporal discretization, shows the 
asymmetry of the flow starting a t  Reynolds numbers between 100 and 175. Above 
this Reynolds numbers the shorter separation region does not change significantly in 
length whereas the longer region grows almost linearly with Reynolds number. At 
Reynolds numbers above about 400 a third separation region appears on the short 
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sidewall, growing in length with increasing Reynolds number, similar. to the 
backward-facing step flow (see Armaly et al. 1983). 

This flow development is shown in more condensed form in figure 6, in which the 
detachment and reattachment points are shown as a function of Reynolds number. 
Experimental results are also shown in this figure, indicating the good agreement 
between experiment and numerical predictions. One exception is the length x1 at 
higher Reynolds numbers (Re = 610), which is predicted to be about 18% shorter 
than was observed in the measurements. No attempt was made experimentally to 
determine the lengths xg and x4, although the onset of this separation region is seen 
in one of the measured velocity profiles (see figure 6). Finally a result labelled 



576 F .  Durst, J .  G. F .  Pereira and C .  Tropea 

44 - 

40- 

36 - 

32 - 

28 - 

- QUICKFST 

A Measurements 

Symmetric calculations 

A 
x2 

100 200 300 400 500 600 

Re 

,/: I I I I ,  I I I ,  

0 

FIGURE 6. Summary of detachment and reattachment points as a 
function of Reynolds number. 

symmetric calculations is shown in figure 6 for reference. These calculations were 
performed by using only half of the computational domain and treating the channel 
centreplane as a plane of symmetry, while still using 13-point quadratic upstream 
convection discretization scheme. As expected, the separation zone grows linearly 
with increasing Reynolds number. 

The symmetry-breaking bifurcation seen in figure 5 is not a sudden transition 
which occurs over a small variation of Reynolds number but rather an asymptotic 
transition. This is illustrated more clearly in the bifurcation diagram shown in figure 
7, in which the mean V-velocity component on the channel centreline is shown as a 
function of Reynolds number. For low Reynolds numbers, when the flow is 
symmetric, this velocity is zero. Deviations from zero occur as the flow becomes 
asymmetric, either positive or negative depending on the sense of the asymmetry. 
The transition from a value of zero to a non-zero value is, however, smooth and not 
abrupt as observed by Fearn et al. (1990). The actual point of bifurcation is therefore 
difficult to fix, but lies near a Reynolds number of 125. 

Fearn et al. (1990) have shown similar results for a sudden expansion of ratio 1 : 3. 
Whereas they predict a sudden change to asymmetry, their experimental results 
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FIGURE 7. Calculated V-velocity on channel centreline. 
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confirm the behaviour shown in figure 7.  Fearn et al. were able to predict this 
behaviour by introducing a constant asymmetry of 1 % into the sudden expansion 
geometry. Using the Reynolds number based on Yhe upstream channel height, they 
observed flow asymmetry for Reynolds numbers exceeding about 64. The difference 
to the present value of 125 lies in the different expansion and aspect ratios used (see 
Chedron et al. 1978). 

Finally some direct velocity comparisons between experimental data and 
numerical predictions are presented to illustrate the range and degree of accuracy. In 
figure 8, two selected downstream profiles for Re = 70 are shown. It is clear from 
these comparisons in the separation region and in the recovery region that the 
agreement between experiment and predictions is excellent throughout the entire 
flow region. Detailed comparisons for Re = 300 also show excellent agreement at  all 
measurement planes. Therefore, the final set of results will only be shown for the case 
Re = 610. 
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Figure 9 shows velocity profile comparisons a t  eight positions downstream of the 
expansion for Re = 610 and good agreement was obtained up to the third separated 
flow region. The largest deviations occur a t  x / H  = 29 (figure Sc),  the position where 
the third separation region is just starting. Up to Re = 610 a Hopf bifurcation was 
found neither in the predictions nor in the experiments. Since there is no fixed point 
of detachment for this separation zone, the assumption of flow two-dimensionality 
requires further study. As suggested by other authors, in non-periodic channels an 
unsteady period flow could be triggered after the appearance and development of 
flow three-dimensionality. 

The present work was supported by the Deutsche Forschungsgemeinschaft within 
the Schwerpunktprogramm ' Finite Approximationen in der Stromungsmechanik '. 
The assistance of Mr K. Eichelberger in performing the experimental measurements 
is gratefully acknowledged. 

Appendix. Numerical model 
The Navier-Stokes equations are integrated over a time increment At and over the 

control volume u surrounding a grid node (see figure 10). The first term of the 
Navier-Stokes equations for q5 = U,, U, yields 

#t du dt = ($,+' - $s) d[dy = v (p+'- p), (A 1 )  
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FIGURE 10. Control volume and notation used in the quadratic Leith type of temporal 
discretization together with the 13-point scheme. 

where 6 stands for the mean values in the control volume. Considering, for 
simplicity, a uniformly spaced mesh in both coordinate directions and further 
assuming that the dependent variable is defined in a local reference frame (t, 7) by 
a quadratic function : 

the mean values 6 may be obtained as 

and (A 1) appears as 

1 (c:"-c:)+-(c3 Ax2 n+1- c , " ) + ~ ( c ~ + l - c ~ )  . (A4) 12 12 

Taking the second derivation of the Navier-Stokes equations and neglecting fourth- 
order derivatives, (A 4) becomes 

Replacing cl, c3 and c5 by their values, referenced to the dependent variables in 
( L s )  yields 
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where Cik;,f+; stand for the Courant numbers, e.g. C,tt,j = ~ ~ , ; , ~ A t / h x ,  and 
CURVtk;,jk; denote finite difference approximations to a second derivative, e.g. 

CURVt++bj = ( # i - l , j  + dt+l,j-Wi,j)/AX2- (A 8) 

The finite-difference counterpart of the convection and diffusion terms is evaluated 
as follows: 

and the first term may be written as 

For conciseness, only the convective flux at the ( i + + , j )  control volume face is 
discretized, considering u~,.;,~ > 0. Thus, replacing the temporal integration by 
Lagrangian integrals : 

where 

A S  = It,, dt = Ci+t,j Ax, 

and evaluating the mean value 6 at the ( i+&j)  control volume face, 6 = c1 +c,g'+ 
c3 g2 +kcs Ay2, yields 

$Ax 

. (A 12) 

The coefficients cl, c2, c3 and c5 are obtained from the quadratic function (A 2) at time 
t, oriented in an upwind like manner. 

A similar procedure is followed for the diffusion fluxes. The mean value of the 
diffusive unit flux at the control volume face (i++,j) is given in the Lagrangian space 
by @/ag = cz+2c3f ,  leading to 

1 ;AX-C~G, I AX 

C C 
[&')I d dg' = d [ c1 ,g' +S g2 +5r3 +"Ay2 ,g' 

0 3 12 

(A 13) 

The explicit finite differences are obtained by rearranging the resulting finite 
difference expressions and the explicit counterpart of source terms. Thus, the 
dependent variable at the (n + 1) time step for each control volume, is obtained from 

#ti1 = $&+ ( F i - ~ , j - ~ ~ , j + ~ , ~ - ~ - & , j + ~ + R i , j + S i , j ) n ,  (A 14) 

(A 15) 

+&Ay2(, CURVlj+;+p CURV,j+i)], (A 16) 

where the fluxes, say e.g. F&, are given by &+;,j = !PI+ Y2+ Y3:  

Yl = .dci+;,j AX W + l , j  + #i,J - ci+;,j ac4,+,,j - #i,j)l, 
Y2 = ~ A x [ - $ A x ~ ( ~ - C ~ + ; , ~ - ~ ~ ) ( E  CURV:+;,j+/3 CURVY+;,,) 

Y3 = - d y A x  [(#i+l,j- -+Ax2 (a CURV:+;,j +p CURVY+;,,)], (A 17) 
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The control-volume face area is represented by d and 

denotes the additional source terms. The velocity divergence for a control volume 
is driven approximately to zero by adjusting the control-volume pressure. The 
pressure adjustment (u’) produces a corresponding velocity adjustment, which for 
the u-velocity component is determined, e.g. for u ~ + ; , ~ ,  by 

The integration of the continuity equation and its discretization using the corrected 
velocity field v = v* +v’ yields the finite difference equation for the pressure 
correction, resulting in the system of algebraic equations solved by the Stone’s strong 
implicit method, see e.g. Azevedo, Durst & Pereira (1988). 
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